

26th ERVO Annual Meeting 10th - 13th of June 2024

SHIP DESIGN

Concept & Initial design

New concept designFeasibility assessmentTender documentation packagesThird party pre-contract review

Basic Design

General design Hydrodynamics & model testing Class documentation for approval Naval Architecture Structural Design Mechanical Systems Outfitting Design Final documentation

Trials, Stability booklet & Manuals

Detail Design

Structural Detail Design Outfitting Detail Design 3D model Workshop documentation Shipyard construction support

26th ERVO Annual Meeting 10th - 13th of June 2024

This document is property of Seaplace and contains confidential information. It shall neither be distributed nor disclosed without written consent of Seaplace.

CONSULTANCY

High qualified engineers working together in each project to support client needs and project requirements

26th ERVO Annual Meeting 10th - 13th of June 2024

R/V Emma Bardan

R/V Miguel Oliver

R/V Ramon Margalef

R/V Angeles Alvariño

R/V Sarmiento Gamboa

R/V Victor Angelescu

R/V Mar Argentino

Requirements definition Concept Design Basic Engineering Detail Design Shipyard support Life cycle support Conversions **Owner representative Construction survey**

R/V Vizconde de Eza

R/V Falkor Too

R/V David Packard

This document is property of Seaplace and contains confidential information. It shall neither be distributed nor disclosed without written consent of Seaplace.

REFERENCE RESEARCH VESSELS

Meeting 10th - 13th of June 2024

IMPLEMENTATION OF ALTERNATIVE FUELS AND DECARBONISATION TECHNOLOGIES IN RESEARCH VESSELS

FROM REQUIREMENTS DEFINITION TO SHIP DELIVERY

SEAPLACE 2024

This document is property of Seaplace and contains confidential information. It shall neither be distributed nor disclosed without written consent of Seaplace.

DECARBONIZATION PATHWAYS

Energy saving measures

A wide variety of design, operational and economic solutions

New energy sources Carbon Capture

26th ERVO Annual Meeting 10th - 13th of June 2024

STORAGE REQUIREMENTS

26th ERVO Annual Meeting 10th - 13th of June 2024

STORAGE REQUIREMENTS

FUELS

Future fuels have much lower density than Diesel

Overview Future Fuels & Emissions Requires Light Heavy 🥌 less weight space 50 Requires less space and lishes Requires less space but heavier 45 than desel Liquid 240 hart diesel CH₂ Hydrogen bas tbd m³ Tamb / 350 bar 2 35 Synthetic diesel Liquefied gas 5 30 Natural gas Reputes more 8 25 Solid CH₂ appace and Peravour Than Requires more space but lighter Tamb / 700 bar 20 than dissel 15 LH_2 10 -253°C / 6 bar CNG 200 har LH-20-9-1-0 CGH, 700 bar Requires CGH, 350 bar Natural gas more 20 space 60 14.300 m³ Gravimetric energy density - MJ/kg 7.200 m³ Indicates change when tank shape is included Ammonia NH₃ Methanol -33°C / 6 bar LNG 8.300 m³ MeOH -162°C/8 bar Tamb / Pamb 3,400 m³ Diesel 2.769 m³ 4.000 m³ Tamb / pamb 2.835 m³ 2.400 m³ 1.636 m³ 1.000 m³ Comparison of storage volume for the same energy amount and Liquid Compressed additional space for cylindric shaped tanks of cryogenic fuels Source: DNV Comparison of Alternative Marine Fuels

Additional space for cylindrical tanks

These characteristics will not improve in the future

ALTERNATIVE POWER GENERATION

	PEMFC	SOFC
Working Temperature	<120 °C	500-1000 °C
Typical Stack Size	1 kW - 100 kW	1 kW - 2 MW
Electrical efficiency	50-60 %	50-65 %
Power density volume	100-600 kW/m ³	3-10 kW/m ³
Power density weight	200-400 kW/t	<90 kW/t
Advantages	Low Temperature Quick start-up and loading	High efficiency Fuel flexibility Hybrid/gas turbine
Challenges	Sensitive to fuel impurities Expensive catalysts	High temperature Long start-up time Slow load variations

FUEL CELLS

Proton Exchange Membrane Fuel Cell

26th ERVO Annual Meeting 10th - 13th of June 2024

This document is property of Seaplace and contains confidential information. It shall neither be distributed nor disclosed without written consent of Seaplace.

STORAGE REQUIREMENTS ENERGY CONVERTERS

RAGONE CHART

- Relates power, energy density for different power plants
- Takes into account energy storage (fuel, battery) and energy conversion devices
- Combustion engines in ideal region

26th ERVO Annual Meeting 10th - 13th of June 2024

STORAGE REQUIREMENTS ENERGY CONVERTERS

Ragone Chart – Volumetric

- Similar tendency as gravimetric
- Typical ship autonomy 200-500 h
- SOFC (using MGO) competitive with combustion engines in this range

(a) Volumetric density of various maritime power plants.

CARBON CAPTURE AND STORAGE METHODS

Carbon Capture methods:

- Chemical Absorption
- Membrane Separation
- Adsorption
- Cryogenic Separation
- Oxy-Fuel Separation

	Temperature	Pressure	Density
Compressed and Refrigerated Liquid	-20 ℉ (-28.9 ℃)	300 psi (20.4 bar)	67 lb/ft ³ (1,073 kg/m ³)
Compressed Gas at Ambient Temperature	110 °F (43.3 °C) 40 °F (4.4 °C) -10 °F (-23.3 °C)	800 psi (54.4 bar) 800 psi (54.4 bar) 800 psi (54.4 bar)	7.91 lb/ft ³ (128 kg/m ³) 57.2 lb/ft ³ (916 kg/m ³) 66.3 lb/ft ³ (1,062 kg/m ³)
Compressed Fluid at Ambient Temperature	110 ºF (43.3 ºC) 40 ºF (4.4 ºC) -10 ºF (-23.3 ºC)	3000 psi (204 bar) 3000 psi (204 bar) 3000 psi (204 bar)	51.7 lb/ft ³ (828 kg/m ³) 62.8 lb/ft ³ 1,006 kg/m ³) 69.2 lb/ft ³ (1,108 kg/m ³)
Dry Ice Storage at Ambient Pressure	-120 °F(-84.4 °C)	14.7 psia (1 bar absolute)	97.5 lb/ft ³ (1,562 kg/m ³)

Requires additional Power

R/V RAMÓN MARGALEF CASE STUDY

Vessel s	pecifications
Length Overall	46,7 m
Beam (max)	10,5 m
Design Draught	4,0 m
Depth (working deck)	4,6 m
Installed Power (generators)	2150 kWe
Service speed	12 kn
Max speed	13 kn
Endurance	10 days / 3000 nm
Class Notation BV	I + HULL + MACH, SPECIAL SERVICE, UNRESTRICTED NAVIGATION, +AUT-UMS, +ALM, +ALS SYS-IBS, CLEANSHIP, CONF+, DINAPOS-AW/AT
Underwater Radiated Noise	ICES 209

26th ERVO Annual

Meeting 10th - 13th of June 2024

R/V RAMÓN MARGALEF CASE STUDY

Power Plant

- 3x 850 kW Gensets
- 1x200 kW Harbour generator
- 2x 900 kW Propulsion motors Total FO Capacity:
- 158 m3
- 134t

CUBIERTA Nº 1

26th ERVO Annual Meeting 10th - 13th of June 2024

R/V RAMÓN MARGALEF

FO: 42,7 MJ/kg & 850 kg/m3 ME: 19,9 MJ/kg & 800 kg/m3 Total FO Capacity: 134 t

• 158 m3

Equivalent Methanol Capacity:

- 288 t
- 359 m3

Available 4-stroke dual fuel engines of 850 kW?

- Option of MCR>3000 kW + Batteries?
- 2,4 times more space for fuel storage

2-4 times more space for power plant if hybridization with batteries

Impact analysis main dimensions of the research vessel

Requirements definition

DOBLE FONDO

SEAPLACE 2024

R/V RAMÓN MARGALEF CO2 CAPTURE & STORAGE

Total FO Capacity:

- 134 t
- 158 m3
- CF,FO=3,206 (t-CO2/t-Fuel)

CO2 generated (assuming 90% of FO use):

- 387 t
- 350 500 m3 for storage

The casing has less than 85 m3

Space requirements to allocate carbon capture equipment

 ${\sim}330\,kW$ extra power for carbon capture process

R/V RAMÓN MARGALEF

Approximate existing total enclosed volume 3.600 m3

Methanol power plant and batteries

900 - 1.250 m3 extra

CO2 capture & storage

350-500 m3 CO2 storage extra

330 kW power requirement extra

CONCLUSIONS

The implementation of alternative fuels requires a proper initial assessment based on:

- Physic-chemical characteristics of fuels
- Logistics
- Technology development status. Known available technology
- R/V operational profile

The impact on newbuildings to be considered from the initial requirements definition:

- Operation
- Main dimensions & power demand
- Economics

Opportunity to operate in full electric mode in specific operation profile

Coscar Perez Ship Technical Manager operez@seaplace.es

Seaplace

seaplace@seaplace.es

in

R

PASSION FOR THE OCEAN

seaplace